
A High Performance IPv6 Flow Table Lookup Algorithm
Based on Hash

Huan Guo† Zhengmin Li†‡ Qingyun Liu† Jia Li† Zhou Zhou† Bo Sun‡*

†Institute of Information Engineering, Chinese Academy of Sciences

89 A Minzhuang Rd, Beijing, China

‡National Computer Network Emergency Response Technical Team/Coordination Center of China

A3, Road Yumin, Beijing, China

*Corresponding Author: Email: sunbo@mail.nisac.gov.cn

ABSTRACT

With the rapid increasing IPv6 network traffic, some network

process systems like DPI and firewall cannot meet the demand of

high network bandwidth. Flow table based on hash is one of the

bottlenecks. In this paper, we measure the characteristics of IPv6

address and propose an entropy based revision hash algorithm,

which can produce a better distribution within acceptable time.

Moreover, we use a hierarchical hash strategy to reduce hash table

lookup times further more even in extreme cases.

CCS Concepts

• Security and privacy~Network security

Keywords

IPv6; load balancing; hash.

1. INTRODUCTION

With the rapid development of network, communication has been

more efficient. Meanwhile, the spread of pornographic, violence

and other information has also been more convenient. In order to

prevent the spread of harmful information, Deep Packet

Inspection (DPI) technology has been widely used. At the same

time, processors and memory speed has not advanced at the same

pace. Larger network scale and faster network transmission bring

in increasing pressure on DPI[1] systems. This leads to the

problem that DPI systems can hardly handle high speed traffic in

the circumstances.

One of the main bottlenecks of DPI systems is flow table lookup,

as these systems often maintain a flow table to keep tracking the

context of TCP/UDP flows. The implementation of flow table is

based on hash algorithms using IP address as the input value.

Nowadays, IPv6 networks are deployed more and more widely.

Since IPv6 has different IP address assignment strategies, as well

as some other characteristics, most of the hash algorithms for IPv4

is not available for IPv6 anymore, which may lead to longer

computing time or worse distribution.

This paper focuses on the above issue. We first analyze the

characteristics of IPv6 address. Then combining with the effect of

some bit operators, we propose an Entropy based Revision Hash,

namely ERH. Compared with other hash algorithms, the ERH can

produce a better result within an acceptable time. However,

balancing load in practical cases may not always be perfect due to

rapidly varying and unpredictable traffic patterns. So at last, we

use a hierarchical hash strategy, which can adapt its own collision

solving method to the traffic. It ensures acceptable collisions even

in extreme cases.

2. RELATED WORK
Hash has been used thoroughly and widely. The most commonly

used hash algorithms are destination address hash, destination

address exclusive OR hash, source and destination address

exclusive OR hash, network checksum, IPSX[2], Bob[3],

CRC32[4-6], MMH[7], XOR_SHIFT and so on. For the first

several algorithms, they are very simple, with poor distribution

results[8]. For the last several algorithms, which are pretty good

and widely used, Guang et al. did some test. In the view of

computing time, IPSX<Bob<MMH<CRC32, and from the

perspective of distribution, CRC32>Bob>MMH>IPSX[9].

XOR and CRC are two well-known hash algorithms. Although

neither of them is novel, they can provide high uniformity and low

cost[10]. Cao et al. simulated performance of several hash

algorithms and showed that CRC16 provides the best performance

tradeoff [11].

The algorithms above are used for IPv4. IPv6 address is 128 bits

long, which is four times long as IPv4, and IPv6 has different IP

address assignment strategies. So, if we use the algorithms

without any change, we will get a longer computing time and

poorer distribution results. There are a few hash algorithms for

IPv6 at present, which are listed below.

Von Neumann (VONN) algorithm splits source and destination IP

address into 64bits separately, and then take the seven-tuple

instead of five-tuple into computation. This method is easy to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

WTMC'16, May 30 2016, Xi'an, China

© 2016 ACM. ISBN 978-1-4503-4284-1/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2903185.2903187

realize by software or hardware, thus it can get a very fast

computing speed. Unfortunately, it cannot make a good

distribution.

Fowler/Noll/Vo (FNV) uses multiplication and some large

constants, so it will run much slower than von Neumann

algorithm. But it can get a fairly even distribution.

Linux Kernel Hash uses the last 32 bits of IPv6 address as input

directly, and has been used in practical engineering. In most cases,

it can achieve a satisfactory effect.

Recent research paper on IPv6, is mainly devoted to provide the

methods of looking up table for IPv6 routing. For example, Hu et

al. studied the realization of IPv6 routing forwarding in multi-core

multi-threaded network processors [12]. For the 100G routers,

Song et al. achieved the routing forwarding by utilizing the

distributed and load balancing Bloom Filter algorithm [13]. Wang

et al. studied the high performance in routing lookup[14].

However, little considerable efforts have been spent on the IPv6

hash algorithms and strategies, and these cannot use on IPv6 hash

directly owing to their significant difference between application

situations.

3. HIGH PERFORMANCE IPV6 HASH

ALGORITHM
Hash algorithm and strategy play a significant role in load

balancing. In this section, we first measure the characteristics of

IPv6 address. Then we come up with an Entropy based Revision

Hash (ERH) algorithm, which can produce a commendable

distribution in an acceptable amount of computing time. At last

we propose a hierarchical hash strategy to further reduce the hash

table lookup time.

3.1 Measurement
One of the reasons for why most hash algorithms in IPv4 are

inadequate for IPv6 is that, IPv6 address is 128 bits, which is four

times long as IPv4. This leads to a longer computing consumption,

which is intolerable for high-speed networks. Another reason is

that, IPv6 has a different IP address assignment strategies, which

means the randomness in every bit of IPv6 address is also

different from IPv4 address.

At present most of the hash algorithms take the four-tuple

(SrcIP/DstIP, SrcPort/DstPort) or five-tuple (SrcIP/DstIP,

SrcPort/DstPort, protocol) as the input value. Since at least 86.97%

of traffic is TCP or UDP [15-17], the protocol field has little

information, so we take no account of the protocol field as one of

the input values. It's obvious that the distribution of IP address and

port influence the hash result directly.

Flow label plays an important role in end-to-end QoS guarantees,

security authentication, and load sharing[18]. RFC 6437

recommends a method of calculating hash using the flow label. In

some way, flow label also has an influence on hash results. But Li

et al. shows that most flow labels are unset, staying in unusable

stages [19].

In view of the above points, we mainly measure and analyze the

distribution and randomness of IPv6 address.

The most commonly used randomness tests [20] are frequency

test, block frequency test, run test, block the longest continuous

"1" test, matrix rank test, discrete Fourier transform test, non-

overlapping template matching test, overlapping template

matching test, the general statistical test, the compression test,

linear complexity test, continuity test, approximate entropy test,

the part sum test, random walk test, random walk test of variables,

etc.. In addition, there is a measurement named Information

Entropy [21] in information theory.

As the packets order has no influence on our experiment, and the

dataset is a set rather than a sequence, we decide to ignore the

factor of order, and make Information Entropy our randomness

measurement method.

According to the entropy formula

H(x) = ∑ 𝑝(𝑥𝑖)𝐼(𝑥𝑖)
𝑛
𝑖=1 = − ∑ 𝑝(𝑥𝑖) log𝑏 𝑝(𝑥𝑖)𝑛

𝑖=1 (1)

Calculating the bit randomness, we have

H(x) = − ∑ 𝑝(𝑥𝑖) log𝑏 𝑝(𝑥𝑖)2
𝑖=1 − 𝑝(0) log2 𝑝(0) 𝑝(1) log2 𝑝(1) (2)

When

𝑝(0) = 𝑝(1) =
1

2

H(x) gets a maximum of 1. At this point it gets the best

randomness.

We use two datasets. The first one is DS1, which was collected

from Mar. 4th to Mar. 11th in 2015 from CSTNET, containing

31,047,034 unique four-tuples. CSTNET is one of the four largest

backbones in China, mainly providing non-profit Internet service

for science and education with IPv4/IPv6 double stacks access

supported. Its bandwidth is about 10Gbps. The second one is DS2,

which was collected from Mar. 9th to Mar. 13th in 2015 from

China Telecom, containing 54,399,438 unique four-tuples. China

Telecom is also a large backbone in China with IPv4/IPv6 double

stack access supported. Its bandwidth is about 10Gbps.

The result calculated by information entropy in DS1 and DS2 are

shown in Figure 1 and Figure 2.

Figure 1. The entropy of every bit of IP address in DS1

Figure 2. The entropy of every bit of IP address in DS2

From the result data, we can see an obvious difference between

ours and the result of Qiao et al. [17]. The reason is Qiao may use

a small and single dataset. Besides, they only measured in narrow

scope so that there are a lot of common prefixes among the IPv6

addresses, making many restrictions on the result. Qiao gets the

conclusion that the 8,12,14,15,16 bytes have high entropies. We

0

0.2

0.4

0.6

0.8

1

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
05

1
13

1
21

en
tr

o
p

y

bit of IP address

0

0.2

0.4

0.6

0.8

1

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
05

1
13

1
21

en
tr

o
p

y

bit of IP address

get a conclusion that 3, 7-16 bytes have high entropies, which

means the bit range which can be used as the input value of hash

increases 1.4 times compared with Qiao.

Although we have much more convincing conclusions using much

larger datasets, this is far from enough. With there being different

IPv6 address allocation methods, different regions may have

different randomness characteristics. So it stands a chance that our

conclusion is only suitable for most situations, but there are still

some exceptions.

Due to this, we classify the dataset grouping by regions and do the

experiment once more. About half thousand regions are detected.

We ignore some regions that only consist a small number of

unique four-tuples. The regions left are divided into two parts

according to the characteristics of IP address distribution. The

normal part has common distribution and the rest is the rare part.

The two line graphs of entropy are shown in Figure 3 and Figure 4.

Figure 3. The entropy of every bit of IP address of the normal

part in DS1 and DS2

Figure 4. The entropy of every bit of IP address of the rare

part in DS1 and DS2

For the normal part, there are little problems with hash algorithms.

Simply dealing with the last 32 bits is always effective enough as

well as fast enough. But for the rare part, dealing properly with it

is just as important as with the normal part. The bytes of 0xFFFE

contributed by the modified EUI-64 is a factor, and some regions'

allocation method is another. Some of them just allocate simply

from 0x00000001 to 0xFFFFFFF. What's more, the number of

hosts is far less than the address space can hold. In another word,

more than half of the interface ID bits are zero. On this condition,

using the same algorithm will lead to a bad distribution.

3.2 Entropy based revision hash (ERH)
Combining with the rare part distribution, we propose a simple,

fast and effective way to enhance the entropy of the last 32bits of

IPv6 addresses in the rare part. The basic idea is to revise the low

entropy bits with the high ones, using XOR or other operations.

Generally, we can revise the 97th-112th bits (the 13th byte) using

57th-72th bits (the 8th byte) or front bits. When revising, we

should skip the zero byte so that we can make it more effective.

After the processing (simply use XOR), the entropy is doubled,

meaning 1.23 growth. The code below is our entropy based

revision hash algorithm.

ERH pseudo-code

a1 = bytes of srcIP[12..13]

a2 = bytes of srcIP[14..15]

b1 = bytes of dstIP[12..13]

b2 = bytes of dstIP[14..15]

for x in (a1,a2,b1,b2)

if x==0x00 or x==0xFF

then

tmp = previous byte with highest entropy

x = x xor tmp

 a = a1<<16 + a2

 b = b1<<16 + b2

 c = src_port xor dst_port

hash_result = operation_with_xor_shift(a,b,c)

3.3 Hierarchical hash strategy
However, balancing load in practical cases may not always be

perfect due to rapidly varying and unpredictable traffic patterns

[22].

A good hash algorithm may be perfect for one situation, but may

perform badly in other circumstances. We have real data to prove

it. So, only a hash algorithm for IPv6 is far from enough. An

appropriate hash strategy is also absolutely necessary.

A good hash should make little collisions, but no hash can ensure

no collisions. In extreme cases, a good hash algorithm can still

lead to many collisions. So, a good hash strategy is needed in this

case to reduce average lookup times. Hence, we design a

hierarchical hash strategy, on the accounts of three points: simple

hash table may lead to serious collisions even using a good hash

algorithm; when just using source and destination address as hash

input, the distribution is relatively even; a hierarchical hash

strategy can ensure acceptable collisions even in extreme cases.

Steps of hierarchical hash strategy are described below.

Initial a two-level hash table at first. Using the source and

destination IP addresses as the first level hash input, and four-

tuple or two-tuple left as the second level hash input. From the

second level, every level is treated as below.

Use zippers to solve collisions. Re-sort the zipper linked lists by

LRU method. Expand to a next-level hash table when collisions

exceed the threshold.

Use two-level hash because of two main reasons: streams can be

distributed evenly after source and destination IP hash; Intel series

NICs can compute the two-tuple/four-tuple hash itself

automatically when it receives a packet, and we can get the result

through its APIs, so we can save a large amount of computing

time.

There are two main arguments need to be settled: the size of each

level in the hash table, and the collision threshold. Different

situations should make different arguments to reach their best

performance. But in general, the size of the next level should be

less than its higher level hash table, and the threshold should not

be too large, usually no more than the maximum acceptable

lookup times.

0

0.2

0.4

0.6

0.8

1

1 5 9
13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
10
1

10
5

10
9

11
3

11
7

12
1

12
5

en
tr

o
p

y

bit of IP address
DS1
DS2

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
10
1

10
5

10
9

11
3

11
7

12
1

12
5

en
tr

o
p

y

bit of IP address
DS1
DS2

In our environment, we set the size of each level to be 1.5 times as

large as its next level, and the threshold to be 5.

4. EXPERIMENTAL RESULTS
The first experiment compares ERH with some other algorithms

with respect to the computing time and average lookup times.

Results are shown below in Figure 5 and Figure 6. DS1 and DS2

were collected from CSTNET and China Telecom separately, all

containing 10,000,000 packets, and the size of hash table is set to

20,000,000.

Figure 5. The computing time comparison

Figure 6. The average lookup times comparison

It can be seen that, CRC has the best distribution result at the cost

of more computing time. IPSX uses the least time with a common

result. Among the algorithms within acceptable time consumption,

Entropy based Revision Hash (ERH) has the best distribution

result. Our comparison results are shown in Figure 7 and Figure 8.

Our system was deployed on CSTNET and China Telecom, and

run for 24 hours from 2016-01-21 16:00 PM to 2016-01-22 16:00

PM.

Figure 7. The average lookup times comparison for CSTNET

Figure 8. The average lookup times comparison for China

Telecom

From the results above, we can see that traditional hash table with

zippers to solve collisions is not stable. Our hierarchical hash

strategy makes it stable, and reduces the average lookup times at

the same time.

5. CONCLUSIONS
In this paper, we first measure the characteristics of IPv6 address,

and find that 3, 7-16 bytes of the address have high entropies.

Then we propose an entropy based revision hash algorithm for

IPv6 address, which can make a better distribution under

acceptable computing time. A good hash should make little

collisions, but no hash can ensure no collisions. So we come up

with a hierarchical hash strategy so that we can ensure an

acceptable and stable average lookup times even under extreme

circumstances.

In the future work, we will design a method which can

dynamically set the arguments to adapt to certain circumstance

automatically.

6. ACKNOWLEDGEMENTS
This work was supported by The Strategic Priority Research

Program of the Chinese Academy of Sciences

(No.XDA06030200); The National Natural Science Foundation of

China (No.61402474).

7. REFERENCES
[1] Kim, N. U., Jung, S. M., & Chung, T. M. (2011). An

efficient hash-based load balancing scheme to support

parallel NIDS. In Computational Science and Its

Applications-ICCSA 2011 (pp. 537-549). Springer Berlin

Heidelberg.

[2] T. Zseby, Sampling and filtering techniques for IP packet

selection.

[3] Jenkins B. Algorithm Alley, Dr. Dobb’s Journal September

1997[J /OL].http://burtleburtle.net/bob/hash/doobs.html.

[4] M. Molina, S. Niccolini, N. Duffield, A comparative

experimental study of hash functions applied to packet

sampling, in: International Teletraffic Congress (ITC-19),

Beijing, 2005.

[5] R. Braden, D. Borman, C. Partridge, Computing the internet

checksum, ACM SIGCOMM Computer Communication

Review 19 (2) (1989) 86–94.

[6] I. O. for Standardization, Information Processing Systems,

Data Communication, High-level Data Link Control

Procedures, Description of the X.25 LAPBcompatible DTE

Data Link Procedures, International standard, International

0

1000

2000

3000

4000

5000

IPSX CRC FNV Linux ERH

m
s

DS1 DS2

0

10

20

30

40

50

60

70

80

90

IPSX CRC FNV Linux ERH

ti
m

e
s

DS1 DS2

1

1.4

1.8

2.2

2.6

3

zipper hierarchical

1
1.4
1.8
2.2
2.6
3

3.4
3.8
4.2
4.6

zipper hierarchical

Organization for Standardization, URL

https://books.google.com/books?id=ff8YuQAACAAJ, 1986.

[7] S. Halevi, H. Krawczyk, MMH: Software message

authentication in the Gbit/second rates, in: Fast Software

Encryption, Springer, 172–189, 1997.

[8] Ying Z. & Hesheng W. (2014). Hash algorithm comparison

and analysis of load balancing for multi-process. Computer

engineering, 40(9), 71-76.

[9] Guang C., Jian G., Wei D, & Jialing X. (2005). Hash

algorithms for IP flow measurement. Journal of software,

16(5), 652-658.

[10] Xiong, B., Yang, K., Li, F., Chen, X., Zhang, J., Tang, Q., &

Luo, Y. (2014). The impact of bitwise operators on hash

uniformity in network packet processing. International

Journal of Communication Systems, 27(11), 3158-3184.

[11] Cao, Z., Wang, Z., & Zegura, E. (2000). Performance of

hashing-based schemes for internet load balancing. In

INFOCOM 2000. Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings.

IEEE (Vol. 1, pp. 332-341). IEEE.

[12] Hu, X., Tang, X., & Hua, B. (2006, March). High-

performance IPv6 forwarding algorithm for multi-core and

multithreaded network processor. In Proceedings of the

eleventh ACM SIGPLAN symposium on Principles and

practice of parallel programming (pp. 168-177). ACM.

[13] Song, H., Hao, F., Kodialam, M., & Lakshman, T. V. (2009,

April). Ipv6 lookups using distributed and load balanced

bloom filters for 100gbps core router line cards. In

INFOCOM 2009, IEEE (pp. 2518-2526). IEEE.

[14] Wang, R., Du, H., & Wang, Y. (2012, August). A Design

and Implementation of a High Performance IPv6 Lookup

Algorithm Based on Hash and Cam. In Proceedings of the

2012 International Conference on Computer Application and

System Modeling. Atlantis Press.

[15] Shen, W., Chen, Y., Zhang, Q., Chen, Y., Deng, B., Li, X., &

Lv, G. (2009, August). Observations of IPv6 traffic. In

Computing, Communication, Control, and Management,

2009. CCCM 2009. ISECS International Colloquium on (Vol.

2, pp. 278-282). IEEE.

[16] Li, F., An, C., Yang, J., Wu, J., & Zhang, H. (2014). A study

of traffic from the perspective of a large pure IPv6 ISP.

Computer Communications, 37, 40-52.

[17] Qiao, P., & Changxing, P. (2007). Distributed sampling

measurement method of network traffic in high-speed IPv6

networks. Systems Engineering and Electronics, Journal of,

18(4), 835-840.

[18] Hu, Q., & Carpenter, B. (2011). Survey of proposed use

cases for the IPv6 flow label.

[19] Li F, An C, Yang J, et al. A study of traffic from the

perspective of a large pure IPv6 ISP[J]. Computer

Communications, 2014, 37(1):40–52.

[20] https://en.wikipedia.org/wiki/Randomness.

[21] https://en.wikipedia.org/wiki/Entropy_(information_theory).

[22] Molina, M., Niccolini, S., & Duffield, N. G. (2005, August).

A comparative experimental study of hash functions applied

to packet sampling. In International Teletraffic Congress

(ITC-19), Beijing.

